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A Dual-Porosity Model for Simulating the Preferential Movement of Water

and Solutes in Structured Porous Media

H. H. GERKE! AND M. T. VAN GENUCHTEN
U.S. Salinity Laboratory, USDA, ARS, Riverside, California

A one-dimensional dual-porosity model has been developed for the purpose of studying variably
saturated water flow and solute transport in structured soils or fractured rocks. The model involves
two overlaying continua at the macroscopic level: a macropore or fracture pore system and a less
permeable matrix pore system. Water in both pore systems is assumed to be mobile. Variably
saturated water flow in the matrix as well as in the fracture pore systém is described with the Richards’
equation, and solute transport is described with the convection-dispersion equation. Transfer of water
and solutes between the two pore regions is simulated by means of first-order rate equations. The mass
transfer term for solute transport includes both convective and diffusive components. The formulation
leads to two coupled systems of nonlinear partial differential equations which were solved numerically
using the Galerkin finite element method. Simulation results demonstrate the complicated nature of
solute leaching in structured, unsaturated porous media during transient water flow. Sensitivity studies
show the importance of having accurate estimates of the hydraulic conductivity near the surface of soil
aggregates or rock matrix blocks. The proposed model is capable of simulating preferential flow
situations using parameters which can be related to physical and chemical properties of the medium.

INTRODUCTION

Porous media often exhibit a variety of heterogeneities,
such as fractures, fissures, cracks, and macropores or inter-
aggregate pores, and sometimes also show dynamic instabil-

_ities of the wetting front during infiltration. These micro-
scopic structures or processes affect water and solute
movement at the macroscopical level bty creating nonuni-
form flow fields with widely different velocities. Such phe-
nomena are often referred to as preferential flow [Beven,
1991]. They have been extensively studied for exploitation of
fissured groundwater and petroleum reservoirs [Barenblatt
et al., 1960; Warren and Root, 1963]. Similar problems are
reported also for flow and transport in unsaturated fractured
rocks [Evans and Nicholson, 1987; Pruess and Wang, 1987;
Wang, 1991], for macroporous or structured field soils
[Beven and Germann, 1982; Nielsen et al., 1986; Steenhuis
and Parlange, 1991}, and even for seemingly homogeneous
coarse-textured soils [Hill and Parlange, 1972; Glass et al.,
1989; Kung, 1990a, b; Baker and Hillel, 1991]. Preferential
flow leads to an apparent nonequilibrium situation with
respect to the pressure head or the solute concentration, or
both [Brusseau and Rao, 1990; Wang, 1991], and severely
limits our ability to predict flow and transport processes in
undisturbed media.

Flow and transport in structured porous media are fre-
quently described using double-porosity (or dual) models.
Such an approach assumes that the medium consists of two
regions, one associated with the macropore or fracture
network and the other with a less permeable pore system of
soil aggregates or rock matrix blocks. Double-porosity mod-
els may be obtained using volume averaging techniques
[Long et al., 1982; Moench, 1984] or, alternatively, with the
method of homogenization [Arbogast et al., 1990; Hornung
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and Showalter, 19901 which assumes that the medium is
periodic at a smaller scale. Both methods yicld equivalent
results at the macroscopic scale [Wheatcraft and Cushman,
1991] for single-phase flow and diffusion-type models. Dual-
porosity models assume that both water flow and solute
transport can be described by two equations which are
coupled using a term characterizing the exchange of fluid or
solutes between the two pore regions. Special cases include
(1) compartment or first-order rate models in which flow or
transport between the matrix blocks is assumed to be
negligible, (2) fissured medium models which, in addition,
assume the storage term for the fissures to be negligible, and
(3) microstructure models which consider the dynamics of
flow and transport at the local scale of individual matrix
blocks [Hornung and Showalter, 1990].

A large number of models using the two-domain or multi-
domain concept have been used to describe water fiow
and/or solute transport in macroporous soils [e.g., Edwards
et al., 1979; Hoogmoed and Bouma, 1980; Beven and
Germann, 1981; Davidson, 1985; Bruggeman and Mo-
staghimi, 1991], unsaturated fractured rocks [Berkowitz et
al., 1988; Dudley er al., 1988], and fissured groundwater
systems [Barenblatt et al., 1960; Duguid and Lee, 1977,
Bibby, 1981]. Compartment models have been suggested for
flow in fractured reservoirs and solute transport in struc-
tured soils [Warren and Root, 1963; Coats and Smith, 1964;
van Genuchten and Wierenga, 1976]. Several authors also
assumed a specific geometry of the macropores or fractures
for water flow [Wang and Narasimhan, 1985; Pruess et ol.,
1990a] or solute transport [Neretnieks and Rasmuson, 1934
van Genuchten and Dalton, 1986]. Most of these models are
limited to conditions of water saturation or steady state flow,
to water flow only, or to conditions for which flow or storage
in one pore system can be neglected. Others have consider-
ably simplified the representation of the fracture and matrix
block geometry. Unfortunately, well-defined geometry-
based models are difficult to apply to actual field situations
since they require an excessive amount of information about
the geometry of the structural units; this type of information
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is seldom available. Also, water flow in most undisturbed
soils has been observed to occur in the macropores as well as
in the soil matrix [e.g., White, 1985; Hornberger et al.,
1990]. Indirect evidence of water flow through both the
matrix pores and the fracture network was obtained by
Gvirtzman et al. [1988, 1990] from natural tritium concentra-
tions profiles in calcareous sandstone, as well as in sandy
and clayey eolian loess sediments.

Skopp et al. [1981] proposed an extension of the compart-
meiit model approach to situations where water in both pore
systems is mobile. While conceptually attractive, their ap-
proach is still limited to steady state flow, while the approx-
imate analytical solution is valid only for relatively small
interactions between the two regions. Solute transport will
become much more complicated during transient flow be-
cause of the influence of such factors as the soil surface
boundary condition [Bond and Wierenga, 1990], the water
application rate [White et al., 1986b], and the initial condi-
tion [White et al., 1986a; Kluitenberg and Horton, 1990].
Variably saturated transient water flow in both pore systems
was considered by Yeh and Luxmoore [1982], who simulate
solute transport in two coupled, overlapping macropore-
mesopore media. Double-porosity models for variably satu-
rated water flow and solute transport in fractured rocks were
also proposed by Dykhuizen [1987] and Dudley et al. [1988].
These two studies applied the Richards’ equation for water
flow and the convection-dispersion equation for solute trans-
port to both pore regions. However, the generality of the
water flow model was reduced considerably by invoking the
assumption that the pressure head will equilibrate instanta-
neously between the fracture and matrix regions. This as-
sumption leads to a single flow equation involving a com-
posite set of unsaturated hydraulic functions for the
structured medium as a whole [Dykhuizen, 1987; Peters and
Klavetter, 1988; Pruess et al., 1990b].

Steenhuis et al. [1990] recently proposed an approximate
numerical model for preferential flow which incorporates
several instead of only two pore water velocity regions. The
multiple domains were obtained by grouping pore sizes using
information derived from piecewise lincar approximations of
the unsaturated hydraulic conductivity function. Convective
solute transport in each pore group was simulated using a
mixing cell procedure, while also allowing for interactions
between various pore domains. In yet another formulation,
Workman and Skaggs [1990] simulated the ponded infiltra-
tion of water into a soil containing a single representative
cylindrical macropore. Macropore flow was described with
the Hagen-Poiseuille’ law, while infiltration from the macro-
pores into the matrix was modeled by means of an empirical
term containing the pressure head gradient as the driving
force. Jarvis et al. [1991a, b] proposed a dual-porosity
model which also included swelling and shrinking of a clay
soil. Water flow in the macropore domain was modeled using
the unit hydraulic gradient assumption, while solute trans-
port in this domain was assumed to occur by convection
only. Water flow between the two regions was described
with a quasi-empirical equation using relative saturation as a
driving force, while solute exchange occurred by both con-
vective and diffusive transport. In other approaches, vertical
flow of water along the macropore walls was described with
a kinematic wave equation [Beven, 1981, 1982; Germann and
Beven, 1985], or a boundary layer flow theory assuming
viscous flow [Germann, 1990]. Chen and Wagenet [1992a],
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on the other hand, used the Chezy-Manning equation to
describe the presumed turbulent flow process in the macro-
pore domain, while employing Philip’s infiltration equation
to describe mass exchange between the two regions. These
same authors [Chen and Wagenet, 1992b] subsequently
used filter theory to simplify the Richards’ and convection-
dispersion equations, thereby facilitating the use of analyti-
cal solutions for flow and transport in the matrix and
macropore domains.

The numerical dual-porosity model proposed in this paper
assumes that the Richards’ equation for transient water flow
and the convection-dispersion equation for solute transport
can be applied to both pore systems. Similar to the two-
region compartment model, water and solute mass transfer
between the two pore systems will be described with quasi-
empirical first-order rate equations. The double-porosity
concept will be studied by means of simulation examples
involving transient water flow and solute transport in vari-
ably saturated structured porous media. The sensitivity of
model results to selected flow parameters will be investi-
gated, and the utility of the model for practical applications
will be discussed.

CONCEPTUAL MODEL

Central to the dual-porosity approach is the assumption
that the medium can be separated into two distinct pore
systems, both of which are treated as homogeneous media
with separate hydraulic and solute transport properties. The
dual-porosity medium is considered to be a superposition of
these two systems over the same volume {Dykhuizen, 1987].
The two pore systems interact by exchanging water and
solutes in response to pressure head and concentration
gradients. Hence macroscopically, the porous medium at
any point in time and space is characterized by two flow
velocities, two pressure heads, two water contents, and two
solute concentrations.

Microscopically, a structured porous medium consists of
soil aggregates or rock matrix blocks (shaded irregular
blocks in Figure 1) surrounded by interaggregate pores or
fractures (dotted areas in Figure 1) which form a more or less
continuous network. While consisting mainly of the larger
pores, the soil macropore network may also include meso-
pores and micropores in the immediate vicinity of the
macropores [Wilson and Luxmoore, 1988; Jardine et al.,
1990; Luxmoore et al., 1990], as well as some mineral or
organic particles along the macropore walls [Schoeneberger
and Amoozegar, 1990]. The fracture network in rocks may
form a continuum consisting of different pore sizes [Long et
al., 1982; Berkowitz et al., 1988]; it may be rough walled or
contain some filling material [Tsang and Tsang, 1987].
Similarly, the matrix may contain some discontinuous
(blind) macropores or fractures which do not affect the
hydraulic conductivity. We will further use the subscript f to
denote the macropore or interaggregate pore system in a
soil, or the fracture network in a fractured rock formation,
and the subscript m for the soil or rock matrix.

A dual-porosity type structured medium is hypothesized
here to involve two water retention functions (Figure 2a),
one for the matrix and one for the fracture pore system, but
three hydraulic conductivities functions: Kq(hs), K, ()
and K ,(h) (Figure 2b). We will use K¢(hy) for the hydraulic
conductivity of the fracture network (defined here per unit
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Fig. 1. Schematic picture of a vertical cross-section of a struc-
tured porous medium at the microscopic level. The shaded areas
indicate soil aggregates or rock matrix blocks, whereas the dotted
areas portray the macropore, interaggregate, or fracture pore net-
work. The framed areas display regions with water and solute
movement through the surface of an aggregate (la), through the
fracture pore network (1b), between aggregates (2a), between con-
tinuous and stagnant fracture pore space (2b), and inside an aggre-
gate (3).

total volume V, ¢ of the fracture pore system) as a function of
the fracture pressure head & . The function K4(hy) depends,
among other things, on factors characterizing the structure
of the fracture pore space (area 1b in Figure 1), such as pore
size, geometry, continuity, wall roughness, or presence of
possible fracture fillings. Similarly, X ,,(k,,) is the hydraulic
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conductivity of the matrix system (defined per unit total
volume V, ,, of the matrix pore system) as a function of the
matrix pressure head #,,. While determined primarily by the
hydraulic properties of single matrix blocks (area 3 in Figure
1), K, (h,,) depends also on the continuity of the matrix pore
system and on the area of water-filled menisci around
contact points between adjoining matrix blocks (area Ja in
Figure 1) during unsaturated flow. Finally, K,(%) is the
effective hydraulic conductivity to be used in equations
describing the exchange of water between the two pore
systems (areas la in Figure 1). X (%), defined here per unit
total volume V, of the medium, is evaluated at a pressure
head 4 which is some average of the pressure heads of the
matrix and fracture pore systems. As a first approximation,
K, is probably best represented by the conductivity function
of the matrix. However, the local bulk density of a soil
aggregate is often higher near its surface than in the aggre-
gate center (e.g., Gunzelmanr [1990], who also obtained
measurements of K, on single soil aggregates) because of
deposits of organic matter, fine-texture mineral particles, or
various oxides and hydroxides along macropore walls. Sim-
ilarly, rock formations may exhibit fracture skins [Moench,
1984], fracture wall, or matrix block coatings [Wang and
Narasimhan, 1985; Pruess and Wang, 1987; Thoma et al.,
1992] involving deposits of clay, calcite, zeolite, or silicates.
On the other hand, some fractured rocks may also have
lower local bulk densities (and hence higher conductivities)
near a fracture face, as compared to the matrix interior,
because of weathering or other physicochemical processes.
Another complication in accurately defining K ,(4) is that the
exchange of water and solutes between the two pore systems
may be restricted to only a small portion of the total interface
area [Hoogmoed and Bouma, 1980], e.g., because of prefer-
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ential flow within the macropores and/cr the possible hydro-
phobic nature of some of the deposits on the macropore
walls. Estimates of the Ky and K, functions may be ob-
tained by assuming that K, is primarily the weighted bulk
conductivity fiinction in the wet range and K, that in the dry
range. Figure 2 gives a schematic representation of the
hydraulic properties of a dual-porosity medium; also in-
cluded are the properties of an equivalent composite medium
assuming a single porosity.

Let us define the porosity ¢ of a structured medium as the
volume V, of pores per unit volume of the medium V, i.e.,
g =V,/V,. Similarly, ¢ = V, /V, rand e, =V, ,/V, .
are the (local) porosities of the fracture and matrix pore
systems, respectively. Notice that V, = V, + V, . and

14
V.=V, s+ V., The three porositics are related by

& =Wf8f+(1 _Wf)(sm (1)
in which wy is a volumetric weighting factor given by
we=V, JV, 2)

The (local) volumetric water constant of the fracture, 6, and
matrix, 6,,, (L* L™?) pore systems are defined as

6f=Vw,f/Vt,f; sz

where V,, rand V,, ,, are the volumes of water (L3) in the
fracture and matrix pore systems, respectively. The water
content of the bulk soil, 8 = V,/V,, is then given by

Vil Vem 3

0 =welbp+ (1 —wpb,, 4)

The water flux densities g, and g, (L T for the two pore
systems are

G = QulAm 5)

where Q¢ and Q,, are the volumes of water flowing per unit
time through unit areas A and A ,,, of the fracture and matrix
regions, respectively. The fluid flux density of the bulk soil at
any given depth is

qr= QslAs;

= Qf + Qm ( 6)
17 va,
where A =wrAand A, = (1 —wpA in which A is the unit
area of bulk soil perpendicular to the flow direction. We
assume here that volumetric weighting as expressed by (2) is
the same as areal weighting, i.e., wy = V, JV, = AJA.
Equation (6) can also be expressed in the form

g=weqr+ (1 —wpq, 0]

which shows that g represents the area-weighted fluid flux
density. The pore water velocities v and v, in the fracture
and matrix regions are defined as

qr ar dm
——— T —— Vm = —‘
& mSw,m em

_qn

V= =-= 8
T erSuy s ®
where S, pand §,, ,, represent the degrees of fluid saturation
in the two pore systems. The average pore water velocity
v = g/ 8 in the bulk soil follows immediately from (4) and (7).
An expression for the average bulk soil hydraulic conduc-
tivity K can be derived by substituting Darcy’s flux law into

(7) yielding
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k24 2 1) v K (M’” ]
—— = —— + p— —— e
9z A ") "\ 9z

&)

where % is the pressure head (L) associated with the bulk
soil and z is the soil depth (L) which is defined positive
downward. Equation (9) reduces to

KZWfo+(1 —wf)Km (10)

if h = h,, = hy, which is the equilibrium assumption used by
Peters and Klaverter [1988], among others. Equation (10}
also holds during steady state unsaturated flow when the
pressure head gradient 6/4/dz in both pore systems becomes
zero or when the system is completely saturated (K = K,).
Finally, a sink term for root water extraction from the bulk
soil may be defined as

an

which represents the volumetric average of the root water
extraction terms of the two pore systems.

S=Wfo + (1 _wf)Sm

GOVERNING EQUATIONS

Darcy-type water flow is considered in both the fracture
and matrix pore system, while the transfer of water and
solutes between the two pore systems is described macro-
scopically using a first-order coupling term. We further
assume that the densities of the fluid and solid phases are
constant, ignore the effects of swelling and shrinking, as-
sume no hysteresis in the hydraulic properties, and consider
the effects of temperature, air pressure, and solute concen-
tration on water flow to be negligible. One-dimensional
vertical water flow in the fracture and matrix pore systerns of
a dual-porosity medium is then described by the following
equations:

dhy 9 oy _ s 2
Toar e\ ez Y g (129

Ry 9 A r,
Con——="\Kn—-K,|+ -5 12
" ot az<”‘az ’") T—wp 7 (120)

respectively, where ¢ is time, I',, is the space- and time-
dependent exchange term (7~!) describing the transfer of
water (subscript w) between the two pore systems, S(T™H
is a sink term to account for root water extraction, and
C(L ™) is the specific soil water capacity given by

EN
C=S8,5+¢—

o (13)

in which S is the specific storage coefficient (L ') and §,
the degree of fluid saturation. The soil water capacity during
unsaturated conditions is closely approximated by the slope
do/dh of the soil water retention function 8(k).

IfT", > 0in (12a and 12b), water transfer is directed from
the fracture system into the matrix. At any depth z, the
transfer term T', is assumed to be proportional to the
difference in pressure head between the fracture and matrix
pore system as follows:

Ty = a,lhy = hy) (14)
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where «, is a first-order transfer coefficient for water
(L' T™1) (subscript w) defined as
(15)

ay, = al,K,

. B

—;_z_yw

with

o

(16)

where B is a factor depending on the geometry of the
aggregates, aq represents the distance (L) from the center of
a fictitious matrix block to the fracture boundary, and Y, 18
an empirical coefficient. Equation (16) was derived by com-
paring Laplace transforms of (15) with those of the linearized
horizontal flow equation assuming a variety of aggregate
geometries. We refer to Gerke and van Genuchten [1993] for
a detailed discussion and evaluation of the water transfer
term, including the manner in which the hydraulic conduc-
tivity K, is evaluated as a function of the “‘average”
pressure head, /, at the interface between the two regions.
The coefficient y,, was found to be 0.4, more or less
independent of the aggregate geometry and the applied initial
pressure head conditions. As shown in previous literature on
solute transport in dual-porosity (mobile-immobile) systems
[e.g., Bolt, 1979; van Genuchten and Dalton, 1986], the
geometry factor B equals 3 for rectangular slabs and 15 for
spheres.

Similar to that for water flow, solute transport with linear
adsorption and first-order decay in a dual-porosity medium is
described by a coupled set of convection-dispersion equa-
tions:

9 d dcy r,
57 OrRpep) = (9fo Fr qfcf> — Opppey v
(17a)
dJ d aC
> (0,RC) = a—z— <0mDm I_ qmcm)
— 0y Cp N (17b)

—wy

where the subscripts f and m refer to the fracture and matrix
pore regions, respectively; c is the solute concentration
(M L7?), D is the dispersion coefficient (L2 T7'), uis a
first-order decay coefficient (771), I’y is the solute (sub-
script s) mass transfer term (M L2 771, and R is the
dimensionless retardation factor given as

Pk

R=1+ (18)

in which p,, is the bulk density (M L ~3) and k an adsorption
coefficient (M ™! L?). As before for water flow, all variables
in (17a and 17b) are defined relative to the partial volume of
each pore system. The only exception is the exchange term
I's, which is defined as the mass of solutes per unit volume
of bulk soil per unit time. Both convective transport and
diffusion/dispersion are hypothesized to contribute to T', as
follows:

ry=(1- d)chf)fcf +dI',é e

+ ax(l - wf)em(cf - Cm) (19)
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where
F‘V
d=05(1- . T, #0 (20)
Tl
o 0
oy = wy R ¢m=(1—wf)7 21)

in which I',, is the exchange term for water (T™1) as defined
previously, d is a dimensionless coefficient which deter-

‘mines the direction of flow between the two pore systems,

¢r and ¢, are dimensionless coefficients (21) relating the
solute concentrations of the fracture and matrix pore system
to the unit solute mass of the bulk soil, and a, is the solute
transfer coefficient (7~}!) given by

B

a;=—
(l2

D, (22)

where D, is the effective ionic or molecular diffusion coef-
ficient (L2 T™1!) of the matrix block near the interface. The
diffusion coefficient D, is equivalent to K, in the water
transfer term given by (15) and (16). Notice that the first two
terms on the right-hand side of (19) define the convective
contribution to u,,, while the third term gives the diffusion
contribution to the exchange term. The product (1 — Wi,
in the third term specifies the volume of water in the matrix
pore system per unit bulk volume; this product is needed to
relate the amount of solute diffusing into or out of the matrix
to the bulk volume. Equation (22) is the same as in previous
two-region (mobile-immobile) studies for solute transport
assuming no flow in the soil matrix pore system [van
Genuchten and Dalton, 1986].

Equations (12a), (125), (17a) and (17&) were solved
subject to the usual initial and boundary conditions. The
initial conditions (subscript i) in the fracture and matrix pore
systems may be given in terms of the pressure head (hysi(2),
hm,i(2)) or water content (6;,(z), 8, (z)), and the solute
concentration (cy;(z), €,i(z)). The standard boundary
conditions for water flow involve prescribed pressure heads
(hyo(®); hyo() and hpy(2), h,, (1)) or prescribed fluxes
(47,0()s qm,o(1) and gy, (1), q,, (1)) at the upper (z = 0) and
lower (z = 1) boundaries of the one-dimensional system. In
addition, a free-draining profile may be imposed by assuming
zero pressure head gradients at the lower boundary. For
solute transport, the standard boundary conditions at z = 0
involve prescribed first-type (€08, cro(t)) or third-type
boundary conditions, where c(¢) is the concentration of the
infiltrating water. At z = [ a zero-gradient boundary condi-
tion may be imposed during periods of drainage. During
upward flow from a groundwater table, either a first- or
third-type condition may be applied using ¢,(¢) as the solute
concentration of the incoming water.

The standard boundary conditions for water flow at the
soil surface (z = 0) need modification when the applied
surface flux, g, ¢, resulting from rainfall or irrigation, ex-
ceeds the infiltration capacity of the matrix pore system, i.e.,

E
Amo(t) > | ~K, —+ K, 3)
9z

z=0

but remains less than the combined infiltration capacity of
the fracture plus matrix pore systems. In that case, a zero or
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TABLE 1. Hydraulic Parameters Used in the Simulations
0, [N a, cm™! n l K, cv/d w S, em!
Fracture 0.0 0.5 0.1 2.0 0.5 2000.0 0.05 1077
Matrix 0.10526 0.5 0.005 1.5 0.5 1.0526 0.95 1077
Exchange term 0.005 1.5 0.5 0.01

small positive pressure head A%, o(r) will develop at the
surface of the matrix pore system, and the surface boundary
condition for the soil matrix becomes

hp(0, 1) = R, o(0) (24)

The flux ¢%,(0, ) must subsequently be recalculated from
condition (24) using the numerical solution, while the bound-
ary flux qj?)o(t) into the fracture system must be adjusted
iteratively with the help of (7) during the numerical solution
process, i.e.,

1

Cﬁ,o‘(t) = Lgo(t) — qﬂ;n,o(f)(l - Wf)] (25)
Wy

NUMERICAL SOLUTIONS

The governing dual-porosity water flow and solute trans-
port equations were solved numerically using the Galerkin
finite element method assuming linear basis functions. A
detailed description of the numerical solutions is given in the
appendix. The mathematical accuracy of the numerical
scheme was verified by comparing simulation results with
those obtained using numerical models for single porosity
systems. While assuming no exchange between the pore
systems, the water flow and solute transport schemes of
each region of the dual-porosity model were tested sepa-
rately by means of transient flow simulations involving
variably saturated conditions. We further used analytical
solutions of the two-region mobile-immobile solute transport
model to verify the diffusion component of the solute mass
transfer formulation (19) assuming steady state flow.

SIMULATION EXAMPLES AND SENSITIVITY STUDIES

The examples presented below serve to illustrate the
performance of the proposed model in simulating various
physical nonequilibrium situations during transient flow and
transport in a dual-porosity type structured porous medium
and to show the sensitivity of the model to selected param-
eters in the first-order mass transfer term for water. We
assumed the application of water at a constant rate of 50
cm/d to a 40-cm-deep dual-porosity medium having an
initially uniform pressure head of is; = h,, ; = —1000 cm.
Water was allowed to infiltrate exclusively into the fracture
pore system, thus assuming that the matrix pore system at
the surface is in effect sealed. To ensure accurate answers,
simulation results given here were obtained with very small
element sizes (as small as 0.1 cm) using an adaptive time-
stepping scheme [Kool and van Genuchten, 1991] with initial
time steps as small as 1077 days.

The hydraulic properties of the fracture and matrix pore
systems were described using the analytical functions of van
Genuchten [1980] as follows:

6=20,+(0,— 0,1+ ]|ah|"]™" (26)

K(S,) = K81 - (1-8Vmm2 (m=1-1/n) 7
where 6, and 6, are the residual and saturated water
contents, respectively, % is the pressure head, K is the
hydraulic conductivity at saturation, S, = (8 ~ 6,)/(6;, — 8,) is
the effective saturation, and «, n, m, and [ are empirical
parameters. The hydraulic parameters used for the simula-
tions (Table 1) are essentially the same as those employed
for Figure 2, except that smaller values of 6, and 6, for the
fracture pore system were used (instead of 8, = 0.75 and
6, = 0.1 as used in Figure 2). The hydraulic parameters of the
fracture and matrix are indicative of relatively coarse- and
fine-textured soils, respectively. We further assume rectangi-
lar aggregates (8 = 3.0) with an average matrix block size of 2
cm (a = 1 cm). As suggested by Gerke and van Genuchten
[1993], the scaling coefficient, vy,,, was set at 0.4, while the
apparent hydraulic conductivity K, of the transfer term was
evaluated as K, = 0.5[K,(hp) + K, (h,,)]. The hydraulic pa-
rameters for K () were assumed to be the same as those for
K,.(h,,), except for the saturated hydraulic conductivity which
was decreased by a factor of 100 (Table 1).

Figure 3 shows simulated pressure head and water content
profiles during infiltration in a 40-cm-deep dual-porosity
system. The water contents J; are given in terms of the bulk
soil volume, i.e.,

19f:Wf9f; ﬁm=wm6m=(1—wf)6m (28)
The dual-porosity model predicts a very rapid increase in the
pressure head of the fracture pore system but a relatively
slow response of the matrix (Figure 3a). The resulting
pressure head gradient between the two pore systems leads
to a transfer of water from the fracture into the matrix pore
system (Figure 35), with a concomitant increase in the water
contents (Figure 3¢) and vertical flow rates in the matrix.
Significant pressure head differences between the two pore
systems can still be observed after ¢t = 0.08 days when the
infiltration front in the fracture system approaches the bot-
tom of the soil profile (Figure 3a). The water transferrate I,
is highest close to the infiltration front and gradually de-
creases toward the top of the profile (Figure 35). The shapes
of the curves reflect the net effects on I',, of the pressure
head differences between the two pore regions, which de-
crease in time, and the values of K,, which increase with
time, at any particular depth behind the moisture front. The
total water transfer rate as integrated over the entire profile
was found to remain fairly constant between ¢+ = 0.01 and
t = 0.08 days. This feature is shown in Figure 5 which will
be discussed in more detail below. At later times, the highest
transfer rates occurred at the top of the profile because of
increased gravity-dominated vertical flow of water im the
matrix pore system (results not further shown here).

The sensitivity of the infiltration process to changes in the -
matrix block size a is shown in Figure 4 after 0.02 days,
again using the parameters listed in Table 1. Simulation
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results obtained with a relatively small matrix block size of
a = 0.1 cm closely approximate the limiting case of pressure
head equilibrium (Figure 4a) with no preferential flow. The
equilibrium moisture front (Figure 4¢) reached a depth of
only 5 cm (at + = 0.02 days). Notice that the total water
content 6 of the porous medium as given by (4) is plotted in
Figure 4c. The water transfer rates (Figure 4b) are appar-
ently so high that the system quickly approaches equilibrium
when a = 0.1 cm. However, for the largest matrix block size

(a = 3.3 cm), water percolated rapidly downward through
the fracture pore system to a depth of 35 cm during the same
time period (+ = 0.02 days or 29 min). This last situation
represents an extreme case of preferential flow in which
pressure head nonequilibrium is very significant (Figure 4a),
and water transfer rates are relatively small with only slight
changes in I, along the profile (Figure 45). All other parameter
combinations yielded results which were in between those twa
extreme cases, indicating various degrees of nonequilibrium.
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Ratio between the depth-integrated water transfer rate

The results in Figure 4 were obtained with varying matrix
block sizes a and a fixed value of 0.01 cm/d for the effective
saturated hydraulic conductivity of the fracture/matrix inter-
face K, , in the water transfer term. Exactly the same results
as in Figure 4 can be obtained by varying K , in such a way
that for a given value of g the ratios K m/az remain the same
as those in Figure 4. This follows from (15) and (16) which
show that the water transfer term «,, is proportional to
Km/az. Hence, as expected, a higher value for K , leads
to faster equilibration between the fracture and matrix pore
systems, while a lower K , leads to increased preferential
flow. The situation where K, , is equal to the hydraulic
conductivity of the matrix K ,, resulted in distributions that
were very close to equilibrium (i.e., as those shown by a =
0.1 cm in Figure 4).

Figure 5 shows transient changes in the spatially inte-
grated total water transferrate I',, , = [ 4T, dz as a fraction
of the infiltration rate ¢ at the soil surface for several matrix
block sizes and again assuming a saturated hydraulic con-
ductivity K , of 0.01 cm/d. For small values of a, the ratio
I, :/qq quickly approaches a fairly constant value of ap-
proximately 0.9. This situation represents a quasi-steady-
state condition between vertical flow and transfer between
the pore systems. Recall that in our example, no water
entered the matrix pore system from the top of the profile.
Higher values of a require more time before equilibrium is
reached. The drop in the ratio when a = 2 cm (Figure 5)
occurs when the moisture front in the fracture system
reaches the bottom of the profile. In this case, the depth
across which water transfer takes place does not further
increase, whereas the pressure differences between the two
pore regions still decrease, thus causing lower transfer rates.

The same physical situation as before was used to also
simulate solute transport. For simplicity; adsorption and
decay were not considered. The dispersion coefficients Dy
and D,, in (17a) and (17b) were both described with
standard expressions of the form

D =Dyt + Aly| (29)

where D7 is the porous media diffusion coefficient (being
the product of the diffusion coefficient in free water and the
tortuosity factor 7), A is the dispersivity, and vis the average
pore water velocity. Equation (29) with Dy = 0.5 cm?/d
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and A = 2 cm was applied to both pore systems. The
effective diffusion coefficient D, was assumed to be 0.05
cm?/d. The infiltration of solute-free water into a structured
medium having an initial concentration of 1 (e.g., mg/L) was
simulated. Because of the distribution of water among the
fracture and matrix, 99.9% of the chemical was initially
located in the matrix pore system.

Figure 6 shows the simulated leaching of solutes during
transient flow as predicted with the dual-porosity model. As
solute-free water infiltrates, the solute concentration in the
fracture pore system decreases rapidly (Figure 6a). Water
with relatively low solute concentration is subsequently
transferred from the fracture into the matrix pore system via
the convective part of the mass transfer term (compare the
water transfer rates shown in Figure 35). At the same time,
however, solutes have a tendency to diffuse back from the
matrix into the fracture pore system because of the large
concentration gradients (Figure 6a) which develop between
the two pore systems. The total solute transfer rates are
mostly negative, indicating a net transfer from the matrix
into the fracture pore system (Figure 65). The solute mass in
the matrix pore system (9,c,,) initially decreases only
slightly (¢ = 0.01 days in Figure 6c; note the different scales
for the two pore systems) but gradually decreases more
rapidly from ¢+ = 0.04 to t = 0.08. At later times, sclute
concentrations (Figure 6a) increase again in the fracture
pore system closely behind the moisture front due to con-
tinuing transfer, mixing, and dispersion. The rate of sclute
mass transfer by convection increases after ¢ = 0.04 days at
greater depths, whereas the diffusive transfer decreases
because of the declining gradients. The net transfer eventu-
ally becomes positive (f = 0.08 days in Figure 6b) near the
infiltration front, thus leading to an increase in the sclute
mass of the matrix pore system at a depth of approximately
30 cm.

The results in Figure 6 reflect the extremely complex and
highly transient nature of transport in a dual-porosity me-
dium involving interactions between vertical convective
transport, vertical diffusion/dispersion, and horizontal mass
transfer and mixing between the fracture and matrix pore
systems by convection and diffusion.

DiscussioN AND CONCLUSIONS

The proposed dual-porosity model is a deterministic ap-
proach designed to simplify the description of water flow and
solute transport in a structured porous medium such that the
model eventually may find application to practical field
problems. The model is able to simulate various degrees of
nonequilibrium at the macroscopic level by selecting appro-
priate model parameters. All model parameters can be
related to physical properties of the medium, such as the size
a and shape B of matrix blocks, or the hydraulic conductivity
K, of the fracture/matrix interface. The combined flow and
transport model permits detailed studies of the complex and
highly transient processes of leaching or accumulation of
solutes under variably saturated conditions.

The study revealed three critical areas of research which
need to be further considered: (1) correct representaticn of
the flow regime in the fracture pore system, (2) formulation
of the adopted exchange term (14) for water transfer between
the two pore systems, and (3) numerical complexities asso-
ciated with the extremely sharp moisture and concentration
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fronts in the fracture pore system. These three topics are
briefly discussed below.

This study assumed the applicability of the Richards’
equation (or Darcy’s equation) to variably saturated flow in
both pore systems. This assumption may be acceptable for
the matrix pore region, but may not be strictly valid for the
fracture pore system at relatively high velocities when the
flow regime may change from laminar to turbulent. How-
ever, an important advantage of also using Richards’ equa-
tion of the fracture system is the consistency in the descrip-
tion of flow in the two pore systems-and the resulting ease of

simplification which does not require a multidimensional
diffusion-based transport model based on a specific geome-
try of the soil aggregates or rock matrix blocks.

The proposed description introduces a separate hydraulic
conductivity function K, (%) in the transfer coefficient for
water in (15). This function is a critical parameter which can
significantly affect the rate of water transfer between the
matrix blocks and the fracture pore system. Unfortunately,
little is known about the physical and chemical properties of
the fracture/matrix interface. The few studies known to us

(Spengler and Chornack [1984] (as cited by Pruess and
coupling water flow in the two systems. A disadvantage of Wang [1987]), Gunzelmann [1990] and Thoma et al. [1992h
the current formulation is the highly nonlinear and transient

nature of the flow process in the fracture system and the
numerical challenges posed by these nonlinearities. Still, the
approach gives a consistent, versatile, and integrated pro-
cess-based description of flow and transport in a structured
medium. As such we believe that improvements in predic-
tions resulting from other approximations of the flow regime
in the fractures, such as Manning’s equation for turbulent
overland flow [Chen and Wagenet, 1992a], kinematic wave

approaches [e.g., Germann and Beven, 1985], or simple
gravity flow models [e.g., Jarvis et al., 19914], must be

suggest that the interface hydraulic conductivity can be
much less than the conductivity of the matrix interior. This
situation would be consistent with our findings that equating
K, with the matrix conductivity K,, will not lead to a
significant preferential flow process. The hydraulic condue-
tivities must differ by several orders of magnitude, or the
matrix block sizes must be relatively large (Figure 4), in
order to allow preferential movement of water over a signif-
icant depth. On the other hand, this finding also means that
the assumption of pressure head equilibrium between the

fracture and matrix pore systems [e.g., Dykhuizen, 1987;
meaningful to justify their implementation. This is especially  Peters and Klavetter, 1988] may well be justified when

true for field situations where the presence of different flow  hydraulic contact between the fracture and the matrix is not
regimes, initial conditions, and boundary effects combine to

yield highly transient flow and transport scenario’s which

may be exceedingly difficult to describe with the above
alternative formulations.

restricted. Clearly, some careful experimental studies like
those reported by Thoma et al. [1992] are sorely needed.
This study also points to the need for further improve-
ments in numerical solutions of the flow equation when
highly nonlinear situations are present. While our numerical
solution generally performed well, some problems of stabil-
ity and lack of mass balance occurred when extremely high
local infiltration rates were applied to relatively dry fracture
pore systems involving highly nonlinear hydraulic functions.
The numerical scheme used for the solute transport model

We also note that the advantages of the relatively simple
first-order water transfer term proposed here are similar to
those of the first-order solute transfer formulation used
previously for transport in two-region, mobile-immobile type
systems [van Genuchten and Dalton, 1986). The first-order
approach constitutes a significant, yet relatively accurate
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also tended to produce some minor oscillations at the
infiltration front in the fracture pore system where transport
was largely dominated by convection. This tendency in-
creased when solute transfer rates between the two pore
system increased (large a, values). More efficient numerical
schemes may be especially needed when applying the model
to actual field problems. Recent work by Ross [1990] and
Ross and Bristow [1991], who applied hyperbolic sine and
Kirchhoff transforms to the Richards’ equation, by Neuman
[1984], who applied a particle tracking method to the advec-
tion-dispersion equation, and by Yeh [1990], who used a
zoomable hidden fine-mesh system, may prove to be useful
for this purpose.

Finally, the application of the dual-porosity model re-
quires estimates of hydraulic, transport, and transfer term
parameters which are not easily measured experimentally.
Some work has been carried out recently to estimate sepa-
rated hydraulic parameters for the fracture and matrix pore
systems from water retention and hydraulic conductivity
measurement on undisturbed soils. Gunzelmann {1990} mea-
sured the soil water retention and unsaturated hydraulic
conductivity properties of single soil aggregates with micro-
tensiometers. Smettem and Kirby [1990] and Othmer et al.
[1991] measured bimodal hydraulic functions of aggregated
soils, whereas Durner [1992] and Othmer et al. [1991]
derived two-modal and even multimodal retention functions
by parameter fitting from experimental data that were ob-
tained using bulk soil samples. While useful, the hydraulic
functions must be very well defined in the wet range to
accurately approximate the properties of the fracture pore
system. This problem is indirectly demonstrated by Figure
2a, which was obtained by assuming that the fracture pore
system comprises 5% of the porous medium. In this case, the
~ retention function of the matrix differs only minimally from
that of the composite medium. Figure 2a points to the
difficulty of clearly distinguishing between separate soil
water retention curves of the fracture and matrix pore
systems using bulk soil measurements which generally con-
tain some uncertainty. Apart from the retention function, it
will be equally challenging to obtain parameters of the
transfer terms, as well as the hydraulic properties of the two
pore systems for soils containing unstable aggregates, or for
soils lacking any visible structure.

Nevertheless, we believe that the proposed model pro-
vides a conceptual and numerical framework for studying
flow and transport processes in dual-porosity systems using
relatively simple parameters which can be related to hydrau-
lic and transport properties of the medium.

APPENDIX: NUMERICAL SOLUTION OF THE DUAL-POrROSITY
WATER FLOW AND SOLUTE TRANSPORT EQUATIONS

This appendix gives a detailed description of the Galerkin
linear finite element schemes used for solving the governing
dual-porosity flow and transport equations. Since the Galer-
kin method has become a relatively standard tool in subsur-
face flow simulations {e.g., Pinder and Gray, 1977; Huya-
korn and Pinder, 1983], only the most pertinent steps in the
solution process are given here. Special attention is given to
the problem of numerically coupling the flow and transport
equations of the two pore regions.
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Water Flow Equations

Substituting (14) for T',, into (12a) and (125b) using (15),
and rearranging leads to the following set of nonlinear partial

differential equations with two unknown variables hy and
P :

m-

a . ok dhy
wa(hf) = wy E Ky E— Ky ~wpCy '—a-tj-'-" Wfo

—aKhs + a¥K.h, =0 (AD)
4 oh,, ah
Lw,m(hm) =Ew, a (Km _a—Z—— - Km) - w,,Cp, _a—tﬂ
WS+ a¥ Kby — atKoh, =0 (A2)

where L, s and L,, ,, are the differential operators for water
flow in the fracture and soil matrix regions, respectively, and
wm = 1 — wy. The dependent variables hy and h,,, are
approximated by series 4, and 4 ¢ as follows:

he(z, ) =he(z, 1) = >, ¢,(2)hs (1)

Jj=1

(A3)

Pon(2, 1) = (2, 1) = D S {(Dhp D)

Jj=1

(A4)

where ¢; are piecewise linear basis functions, h,, ; and Ay ;
are the associated time-dependent coefficients representing
the solutions of (A1) and (A2) at the finite element nodal
points, and » is the total number of nodes. The Galerkin
method requires that the differential operators be orthogonal
to each of the n basis functions, i.e.,

i=1,--+,n (AS)

jl L,Ah)$(z) dz=0

0

»n)  (A6)

f LomR$iz) dz=0 (=1,
0

where ¢; are the weighing functions which in the Galerkin
approach are identical to the basis functions. The integra-
tions in (AS) and (A6) are performed over soil depth .
Substituting (A1) and (A2) into (A4) and (AS), respectively,
using integration by parts of the spatial derivatives, and
incorporating (A3) and (A4) leads to the matrix equations

[Af Hhg} + By Hdhs/dt} — [Eylhy,} = {Ff}

(A Ko} + By Xdhyjdty — E M hs} = {F }

where

(AT}

(A8)

3 ! do; de; . [
[Af,_,]_wf Kf -—Z——d2+aw Kad)id)j dz
0
(A9)

i 1
—dz + ¥, f K;b,9;dz
(A10)
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[Bf,-j] = Wy fl Cf¢i¢j dz (Al1)
0

Bm,]=wn f Cndid; dz (A12)
0

[Eyl = f K,$:¢; dz (A13)

T ! do;
{Ff‘}: —wqu¢i|0+Wf Jf K, E—Sfd),- dz (Al4)
[

! 1 do;
{Fm} = _WmQM¢i|0 +w, f Ky ——- Smd)z dz
i 0 dz
(A15)
in which
ks 3k
ar = —| Ky — K > Am_—K'L_—Km
ar ( A f) a ( " 9z )
(A16)

Equations (A7) and (ARB) together define a set of m = 2n
ordinary differential equations with nonlinear coefficients
Cs, Cp, Ky, K, K, §p, and §,. These coefficients were
expanded over each element in terms of the linear basis
functions and the nodal values of the coefficients. The time
derivatives in the matrix equation were approximated with
fully implicit finite difference schemes. Defining the matrix
equations themselves at the half-time level (¢ + 1/2A7) now
yields

([Af]k+ 1/2 + i [Bf]k+ 1/2){hf}k+ 1_ [E]k+ I/Z{hm}k+ 1

1 - .

1
([Am]k+ 1/2 + A_t [Bm]k+ 1/2){hm}k+l _ [E]k+ l/2{hf}k+1

1

where k denotes the time level and At is the time step. We
further applied mass lumping to the water capacity matrices
[Bs] and [B,] of (All) and (A12) according to the “L1
scheme’” of Milly [1985]. Equations (A17) and (A18) may be
solved consecutively by applying an iterative scheme to
estimate and update the unknown pressure head vector of
the second pore system. Preliminary tests showed that more
stable solutions resulted when the equations were solved
simultaneously. Therefore (A17) and (A18) were combined
to yield a single matrix equation in 2n unknowns:

[P1* " g = (G} (A19)
where [P] is a symmetric seven-diagonal matrix, while h;
comprises both & r; and h, ;. For an arbitrary jth node (j =
2, -+, n — 1), (A19) yields two equations as follows:
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k
by it + e thut L+ dphf”!
+ahy  Hbphf Tt it =g, (420)
k1 k+1 k+1
j— lhf] L bmj—lkmj‘1 + ajhfl
+d,, hk“ + ¢ h"“ + bmh,’;ﬁ{ Im, ~ (A2D)
where the coefficients are given by
*
w .
a;= — Tz— [AZJ'_ I(Kaj—l + 3Kaj) + AZj(3Kaj + K"j+l)‘]
(A22)
W *
bfj—l = - ZAZJ (Kf . Kf) + — AZJ_ 1(K + Kaj)
(A23)
Wf a:;/
5= " 5ag Kn t K)o Ag(Ky T K, ) (A24)
*
w
Cj_1 _—EAZj_l(Kaj~1+Kaj (A25)
a’l,
6= = 5 Ay(Kq + K, ) (A26)
4=k vky)+ -k 4k
= —_ +
572 |ag, o K K g K Ky
Wy
+ 6TAt' [AZJ-_ 1(ijvl + 2ij) + AZj(Zij + ijﬂ)]\
a’y,
+ “1‘2* [AZJ'_ I(Kaj—l + 3Kaj) + AZj(3Kaj + Kaj+|)]
(A27)
%= o 2L [az; i(Cy,_, +2Cp) + 82/2Cy + Cp )IAf
+ 2k, K ) - LAz (S, +25))
7 fi-1 fisn 6 -1y, fi
+ Az,(28, + Sy )] (A28)

The coefficients b,,, j_1, b, j, d j, and g,,, ; are the same as
bfj-1, by, dgj, and g, ; above, provided the parameters of
the fracture pore system (wg, Ky, C > Sps h}‘) are replaced
by the corresponding parameters of the matrix pore system
Wos Kogs Cos Sy hE).

Equation (A19) was solved by Gaussian elimination using
LU decomposition and back substitution. The scheme uses
the Picard iteration method with underrelaxation as de-
scribed by Cooley [1983]. Convergence criteria, the adaptive
time stepping procedure, and estimation of the pressure head
values at the new time levels were similar as those used in
the HYDRUS code of Kool and van Genuchten [1991]. The
soil water capacity terms were evaluated as proposed by
Milly [1985]. In case of very small changes in the nodal
pressure head, water capacities were calculated directly
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from analytical equations of the soil water capacity functions
[Kool and van Genuchten, 1991]. The boundary conditions
were implemented in the usual manner.

Solute Transport Equations

The Galerkin method was similarly used to solve the
coupled set of equations describing solute transport in the
fracture and matrix pore systems. For this purpose, the
dependent variables ¢, and ¢, are approximated by

n

crz, )=2;(z, )= > p2)epf(t)  (A29)
j=1
ez, =28z, )= D, b2y () (A30)

Jj=1

where ¢4z, 1) and ¢,(z, t) are the approximate solutions of
the solute concentrations in the fracture and matrix pore
system, respectively. To solve for the time-dependent coef-
ficients ¢ ; and c,, ;, we applied centered-in-time, Crank-
Nicholson-type finite difference schemes to the time deriva-
tives, together with dispersion corrections, as explained by
van Genuchten [1978]. Equations (17a) and (17b), using
(19), and rearranged in terms of the dependent variables,
become

wr
Ly(cs) = A [(0rRrcp) ™ 1=(87Rrcs) ]

1

k+1
d ODvaCf
— = {wr — ———qgscs |~ trCr — U,C
2 faz f=r oz arcr fer mbm

1 O (g o 3 k 0
- = - —— c = 1trCr — U,C =
S \Wr ag \OrPr 5T ArCr | T Sy T U

(A31)

W
Ly(c,) = -Z—t— [(amRmCm)k * 1_(emRmcm)k]

k+1
) —tpCm t+ ufcf}

k
qmcm) Il + ufcfjl =0

1 ] _ dcp,
—E Wma_z‘ 9 ) B;—qmcm

1 ad €y,
- = —1\4,D5 ——
2[W’"az<”‘ ™ 9z

where

(A32)

tr =wpelppyp t ug; by = WOy — Upy

(A33)

Ur = (1 - d)rw¢f + aswmom
(A34)
Up=dlyd, — aw,b,

and where the dispersion correction factors are defined as
[van Genuchten, 1978]
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2 2
S qfAe qrAt
Df =Dy ——L—; D =D, +—L (A35)
662R, 602R,
2 2
_ gt gt
D, =Dp——5— Dy =Dy+—5—  (A36)
662R,, 602R,,

The finite element analysis from this point on proceeds
along the same lines as before for the flow equations. After
substituting (A31) and (A32) into the optimization scheme,
partial integration of the spatial derivatives, and using (A29)
and (A30), the following set of matrix equations results:

1 k+1
<[Af-] + A7 [B;]+ [Tf]) {Cf}k+ !

1 k
+ U Yot = (—[A;] 5 (Bl - [Tf]) {cs}F
= [U et + {Fs} (A37)

1 k+1
([Arr:] t o Brlt [Tm]> {emph ™!

1 k
+ (U1 Yo}l = (*[A,;{] + 57 Bl - [Tm]) {emt"

= (U e Yo+ {F (A38)
where
_ wr [l _ d¢j d¢i
A ]=-- 0. D7 —2— g | -2t
[fii] 2 fo(f f dz qro; a dz {(A39)
Yot de; do,;

Af1="L | e = -g,¢.| — 40
(4, ] ZJO(ffdz ard; dzdz (A40)
1
[ny]=wff 0rRyd i) dz (A41)

0

1 [
[Tr)=5 J trdid; dz (A42)

0

1 n
[Uf,,]:;f updi$; dz (A43)

0

1
{Frp =3 a7+ afhai (Add)
in which
; _ déy A

a5 = 9Dy = arés (A45)

and where [A,,1, [A,[], [B,,], [T,], [E,], and {F,,} are the
corresponding matrices and vectors containing variables and
coefficients with properties of the matrix pore system (6,,,
D,y DY, s 45 Ry tms Uy Wy and &,,). To limit
numerical oscillations, mass lumping was applied to the time
derivatives in equations (A37) and (A38). All coefficients in
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(A39)-(A44) were expanded for each element in terms of the
linear basis functions.

The element matrices were combined into global matrices
for each pore system. The global matrices, in turn, were
combined to yield the following single matrix equation
containing the unknown concentrations of both pore sys-
tems:

[P Hept t = 1051Mep + {Ffy = (G}

in which [P*] and [Q*] are nonsymmetric seven-row diago-
nal matrices (i = 1, - -+, 7). For an arbitrary jth node (j =

(A46)

2, -++, n — 1) the linear finite element scheme gives
afc;c+ll+agnck+1 +af k+1
+ a;"c"“ + a,f ;*‘ + a;"cf,,if gl (A47)
Fok+1 k+1 Fok+1
ajer, aé"cmj +ascr,
k+1 ok k+1 _
+ a"{'cmj+ + ascfj:rl + ag'cm;ll =g, (A48)
where
Azj_
o 0 .
ai Sa o T ug) (A49)
= } -y _ 1 :
2= 4AZ] (ef -1 r OfJij ) 12 (quj~l + qu)
84 AS0
+ (tfj—l + tf,) ( )
a{ = % [Az; - I(ufj_. + 3ufj) + Azj(3ufj + ufjﬂ)] (A51)
f= (6 Dy +85Dp) + — (9D
ay = ——
4T Az, ik 5 78
1 w
+ 605, Dy )| —‘(CIf ij‘1)+@
. [AZ]'_ l(efj_lRf}_l + ZOfJRfJ) + Az,(ZOfJRf!
+ 6. Ry )]
1
+ 3 [AZj_ l(tqu + 3th) + AZj(g‘tfi + tfi+l)]
(A52)
fo 2y AS3
as = > ug+ug ) (A53)
—-w
fw L - -
a6—4AZj (BfJDfJ + 0fj+1ij+1)
Az
+ 5 (CIf+ qs,, )+24 (tr,+17.)  (A54)
and where a* = af, al* = —a{, al’ = af, al' = —af,
al' = af, and a?* = —al provided that in these expressions
6 3 7 5P

all parameters of the fracture pore system are replaced by

those of the matrix pore system (6,,, D, Gus Ros s Upms

w,,). Vector {G°} combines the elements of matrix [Q*] and
vector {F*}. Matrix [Q°] in (A46) is exactly the same as
matrix {P°], except that D, and D, have to be replaced by
(- Df Yand (—D,}), qrand g, by( qyp) and (—gq,,), usand
Uy by (—uy) and( Uy), tpand ¢, by (- tp) and (—¢,,), and

wy by w,,. The entries f; and f,, of vector {F*} in (A46)are
given by

fr,= =3 1af0, k+ 1) + g0, k)] (455)

fm = =3 L@n(0, k+ 1)+ g5,(0, k)] (AS6)

=0 fu =0  (j=2,---,n-1) (A57)

=3l k+ 1) + g, k)] (AS8)

Fum, =5 Lan(l, k+ 1) + 5,0, ©)] (A59)

The solute transport boundary conditions were implemented
in the standard way.
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